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ABSTRACT 
 

The constitutive relationships presented for concrete modeling are often associated with 

unknown material constants. These constants are in fact the connectors of mathematical 

models to experimental results. Experimental determination of these constants is always 

associated with some difficulties. Their values are usually determined through trial and error 

procedure, with regard to experimental results. In this study, in order to determine the 

material constants of an elastic-damage-plastic model proposed for concrete, the results of 

44 uniaxial compression and tension experiments collected from literature were used. These 

constants were determined by investigating the consistency of experimental and modeling 

results using a genetic algorithm optimization tool for all the samples; then, the precision of 

resulted constants were investigated by simulating cyclic and biaxial loading experiments. 

The simulation results were compared to those of the corresponding experimental data. The 

results observed in comparisons indicated the accuracy of obtained material constants in 

concrete modeling. 
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1. INTRODUCTION 
 

Concrete is the most used construction material [1]. Conventional concrete is a composite 

material consisting of cement, water, sand, and aggregates. Despite negative effects of this 

composite structure, concrete is still known as an essential material [2]. In general, and 

particularly with regard to concrete, inefficient modeling of engineering materials is one of 
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the factors resulting in weakness of structural analysis [3]. Concrete structures are usually 

analyzed using finite element method. The analysis of structural engineering problems using 

finite element method always includes primary-boundary conditions and the material 

response to these conditions. The establishment of a relationship between these two factors 

requires a constitutive model [4]. Constitutive rules are generally determined based on a set 

of experiments [5-6]. Experimental studies on concrete through uniaxial and multi-axial tests 

associated with compressive, tensile, and cyclic loading showed that the concrete response 

included strain-softening/hardening behavior, degradation of stiffness, volume dilation, 

anisotropy, and irreversible deformations.  

In recent years, several constitutive models have been proposed for concrete. These 

models are usually classified into five categories including the models derived from 

empirical relationships, elasticity models, plasticity models, models based on continuous 

damage theory, and micromechanics models [7]. Determining the constitutive relationships 

directly and empirically through tests seems to be an appropriate way, taken into account 

even in recent years [8-11]. In spite of using artificial intelligence such as fuzzy algorithms 

in this field [8-9], these studies have often used multi-variable regression [10-11]. Despite 

their high accuracy and simplicity, these relationships can only simulate a specific behavior 

or a specific loading state; further, it is not possible to use them for general modeling of 

concrete as finite element method. Linear elastic models are the simplest constitutive models 

available in the literature [5]. In elastic models, the concrete behaves in a linear elastic 

manner until reaching the ultimate stress and the subsequent rupture in brittle state; however, 

these constitutive models are usually inappropriate for concrete, because concrete is 

considered as a pressure-sensitive material, which generally has a strictly non-linear and 

non-elastic performance under the applied load [12]. Plasticity models have an appropriate 

agreement with single and multi-axial compressive behavior of the concrete. Irreversible 

deformations and volume expansion can be expressed using the elasticity theory {Fig. 1(a)}, 

but macroscopic spread of the micro-cracks leads to degradation of the initial stiffness and 

reduction of the material effective cross-section. Expression of this phenomenon based on 

classic plasticity is very complicated [14], while it can be simply defined using the damage 

theory {Fig. 1(b)}. As shown in Fig. 1, the damage and plasticity theories are combined with 

each other to achieve an appropriate model according to the real behavior of the concrete 

[14-15]. One of the simplest and most practical methods for combining these two theories is 

using the effective stress space [14-15]. In this method, it is assumed that the materials have 

no cracks and discontinuities and are modeled elastoplastically in the effective stress space; 

then, the degradation of stiffness and reduction of the effective cross-section caused by 

micro-cracks are applied on the results of  effective stress space using damage theory, so that 

actual results are achieved. 
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(a) plastic behavior   (b) damage behavior   (c) plastic-damage 

Figure 1. Typical uniaxial compressive stress-strain diagram of concrete [13] 

Several researchers have used the effective stress space method to combine the isotropic 

or anisotropic damage with the plasticity theory [14-20]. These studies have generally 

focused on demonstrating the models ability to describe all the behavioral characteristics of 

concrete. One of problems of the relationships of damage-plasticity models is the set of 

constants which should be determined beforehand. These constants are in fact the connectors 

of the mathematical models to the experimental results, whose improper determination leads 

to the model failure in predicting the results; accordingly, these constants are essential in 

models. Experimental determination of these constants is usually associated with problems. 

Generally, inverse methods are used for determination of these values in order to prove the 

efficiency of models presented in the literature [13-21]; in other words, after identifying the 

modeling relationships through trial and error, the values of constitutive relationship 

constants are determined with regard to the experimental results. The models presented in 

these studies are often validated based on a very limited number of experimental results and, 

in most cases, it is impossible to make any primary estimation of the constants. Several 

studies have expressed that it is possible to obtain appropriate values for modeling constants 

by matching the modeling through trial and error with uniaxial compressive and tensile 

diagrams [13, 17-19]; Wardeh and Toutanji [22] used the genetic algorithm optimization 

method to determine the numeric constants of an elastic-damage model. Although their 

results were promising, this modeling method is unable to describe the irreversible 

deformations of concrete. 

In this study, the elastic-plastic-damage model of Voyiadjis and Taqieddin [18], which 

had simple modeling relationships, was selected and implemented in MATLAB. Then, 

based on a set of experimental results, the optimal values of the damage and plasticity 

constants were determined using the genetic algorithm tool of this software. In the next 

sections, the elastic-plastic-damage model formulated by Voyiadjis and Taqieddin [18] will 

be explored. 

 

 

2. ELASTIC-PLASTIC-DAMAGE MODEL OF VOYIADJIS & TAQIEDDIN 

[18] 
 

In Voyiadjis and Taqieddin’s model [18], the effective stress method has been used for 

developing the relationships. Based on this method, the elastoplastic response of the 

problem is calculated regardless of the effect of damage on the effective stress space, and 

then the damage effect is applied to this response. This model includes a criterion of plastic 

yielding presented in the effective stress space [14-21]; further, the damage criterion used in 

this model has been obtained based on the results of Tao and Phillips [13]. This damage 

criterion is isotropic and includes two numeric variables of damage for compression and 

tension. The model of Voyiadjis and Taqieddin [18] will be described in following sections; 

furthermore, necessary modifications for this model will be proposed. 

Eq. (1) presents the effective stress tensor (stress in undamaged configuration) based on 

Hooke's Law.  
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(1) 𝜎𝑖𝑗 = �̅�𝑖𝑗𝑘𝑙(𝜀𝑘𝑙 − 𝜀𝑘𝑙
𝑝

) 
 

In this equation, 𝜀𝑘𝑙 and 𝜀𝑘𝑙
𝑝

 indicate overall and plastic strain tensors, respectively. �̅�𝑖𝑗𝑘𝑙 

stands for the fourth-order tensor of the undamaged isotropic elasticity and is calculated 

through Eq. (2). In Eq. (2), δ𝑖𝑗 indicates Kronecker delta tensor. G ̅ and K ̅, respectively, 

indicate the shear modulus and bulk modulus of the undamaged materials. These constants 

can be expressed based on the elasticity modulus (E) and Poisson's ratio (ν) of the 

undamaged materials {Eq. (2)}. 

 

(2) �̅�𝑖𝑗𝑘𝑙 = 2G̅(
1

2
(δ𝑖𝑘δ𝑗𝑙 + δ𝑖𝑙δ𝑗𝑘) −

1

3
δ𝑖𝑗δ𝑘𝑙) + 𝐾δ𝑖𝑗δ𝑘𝑙; 𝐾 =

𝐸

3(1−2𝜈)
; G̅ =

𝐸

2(1+𝜈)
 

 

Configuration of the materials in the damaged state can be presented similarly to the Eq. 

(1) {Eq. (3)}. 

 

(3) 𝜎𝑖𝑗 = 𝐸𝑖𝑗𝑘𝑙(Φ)(𝜀𝑘𝑙 − 𝜀𝑘𝑙
𝑝

) 

 

𝐸𝑖𝑗𝑘𝑙 is the fourth-order tensor of elasticity in the damaged configuration. In the damage 

model of Tao and Phillips [13], the stress-strain relation contains a numeric variable of 

isotropic damage (Φ). Accordingly, 𝐸𝑖𝑗𝑘𝑙 is defined as follows: 

 

(4) 𝐸𝑖𝑗𝑘𝑙 = (1 − Φ)�̅�𝑖𝑗𝑘𝑙 

 

By inserting Eq. (4) in Eq. (3) and considering Eq. (1), the relation of the real stress 

tensor is obtained {Eq. (5)} [18]. 

 

(5) 𝜎𝑖𝑗 = (1 − Φ)𝜎𝑖𝑗  

 

The numeric variable of Φ represents the macroscopic effect of the materials damage 

mechanism. This variable is obtained from the weighted average of the variables of 

compressive damage (𝜑−) and tensile damage (𝜑+). The ratio of the coefficients of 

compressive and tensile damage variables is considered equal to the ratio of the numerical 

contraction of the compressive and tensile stress tensor to the numerical contraction of 

overall stress, respectively [13] {Eq. (6)}. Numerical contraction of the second order tensor 

is expressed as ⟦𝑋𝑖𝑗⟧ = 𝑋𝑖𝑗𝑋𝑖𝑗. 

 

(6) Φ =
⟦�̅�𝑖𝑗

+⟧𝜑+ + ⟦�̅�𝑖𝑗
−⟧𝜑−

⟦�̅�𝑖𝑗⟧
 

 

According to the above equation, in order to consider the effect of damage 

mechanism on the nonlinear performance of concrete under tension and pressure, the 

effective stress tensor is decomposed into two compressive (𝜎𝑖𝑗
−) and tensile (𝜎𝑖𝑗

+) parts 

{Eq. (7)}. This is done using spectral decomposition {Eq. (8)} [14, 16]. The value of 
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𝑃𝑖𝑗𝑝𝑞
+  is presented in Eq. (9). 

(7) 𝜎𝑖𝑗 = 𝜎𝑖𝑗
+ + 𝜎𝑖𝑗

− 

(8) 𝜎𝑖𝑗
+ = 𝑃𝑖𝑗𝑝𝑞

+ 𝜎𝑖𝑗 

(9) 𝑃𝑖𝑗𝑝𝑞
+ = ∑ 𝐻(�̂�(𝑘))𝑛𝑖

(𝑘)
𝑛𝑗

(𝑘)
𝑛𝑝

(𝑘)
𝑛𝑞

(𝑘)

3

𝑘=1

 

 

�̂�(𝑘) and 𝑛𝑖
(𝑘)

 indicate the values of the effective stress tensor and its main equivalent 

directions. The negative part of the stress tensor can be easily calculated based on Eq. 7 {Eq. 

(10)}.  

 

(10) 𝜎𝑖𝑗
− = 𝜎𝑖𝑗 − 𝜎𝑖𝑗

+ 

 

In order to model the concrete through incremental writing of the above equations, it is 

enough to determine the values of plastic strain and the numerical variable of damage in 

each step. The method of determination of these values is briefly explained below (See 

Voyiadjis and Taqieddin [18] for more details). 

 

2.1 Plasticity yield surface and hardening functions 

A vital component in modeling based on the plasticity theory is the yield surface. Eq. (11) 

shows the yield criterion used in this study [14]. This yield criterion has been successful in 

simulating the behavior of concrete under uniaxial, biaxial, and multi-axis load and cyclic 

loading [14-21]. In Eq. (11), this criterion is presented in the effective stress space. 

 

(11) 𝑓 = √3𝐽2̅ + 𝛼𝐼1̅ + β𝐻(�̂�𝑚𝑎𝑥)�̂�𝑚𝑎𝑥 − (1 − 𝛼)𝑐−(𝜅−) = 0 

 

In the above equation, 𝐼1̅ = 𝜎𝑘𝑘 and 𝐽2̅ = 𝑆�̅�𝑗𝑆�̅�𝑗 2⁄  indicate the first invariable of effective 

stress tensor 𝜎𝑖𝑗 and the second invariable of effective stress deviator tensor (𝑆�̅�𝑗 = 𝜎𝑖𝑗 −

𝜎𝑘𝑘δ𝑖𝑗 3⁄  (, respectively. H is the Heaviside function. The value of this function is equal to 1 

if the maximum principal stress (�̂�𝑚𝑎𝑥) is greater than 0; otherwise, it is equal to 0. α is a 

constant number based on uniaxial (𝑓0
−) and biaxial (𝑓𝑏0

− ) compressive resistance of concrete 

and is calculated using Eq. (12) [14]. 

 

 

(12) α =
(𝑓

𝑏0
− 𝑓

0
−⁄ ) − 1

2(𝑓
𝑏0
− 𝑓

0
−⁄ ) − 1

 

 

In Eq. (11), κ± is the equivalent plastic strain in tension and pressure {Eq. (13) and (14)} 

[16]. These parameters are also known as hardening variables. 
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(13) 𝜅+ = ∫ �̇�+𝑑𝑡
𝑡

0

 

(14) 𝜅− = ∫ �̇�−𝑑𝑡
𝑡

0

 

 

�̇�+ and �̇�−are the equivalent plastic strain rates under tension and pressure, respectively. 

Lee and Fenves [14] have proposed Eq. (15) and (16) for calculating them. 

 

(15) �̇�+ = 𝑟𝜀̇̂𝑚𝑎𝑥
𝑝

 

(16) �̇�− = −(1 − 𝑟)𝜀̇̂𝑚𝑖𝑛
𝑝

 

 

In the above equations, r is a numerical coefficient calculated based on the value of main 

stresses {Eq. (17)} [14]. In certain states, such as uniaxial pressure and tension, the value of 

this variable is obtained 0 and 1, respectively.  

 

(17) 𝑟 =
∑ 〈�̂�𝑖〉

3
𝑖=1

∑ |�̂�𝑖|
3
𝑖=1

 

 

�̂�𝑖 in Eq. (17) is equivalent to the eigenvalues of the effective stress tensor. In this 

equation, Macaulay brackets are used to eliminate negative values. This function is defined 

as 〈𝑥〉 = 0.5(|𝑥| + 𝑥). 

The non-associated flow rule has been used in this model [18]. In other words, the yield 

function and the plastic potential are not matched. The plastic strain rate tensor is calculated 

by differentiating from the plastic potential function of 𝐹𝑝 in terms of the effective stresses, 

and using the parameter λ̇ of the plastic flow according to Eq. (18). 

 

(18) 𝜀�̇�𝑗
𝑝

= λ̇
𝜕𝐹𝑝

𝜕𝜎𝑖𝑗

 

 

Lee and Fenves [14] defined the plastic potential function 𝐹𝑝 with Drucker Prager 

structure {Eq. (19)}. 

 

(19) 𝐹𝑝 = √3𝐽2̅ + 𝛼𝑝𝐼1̅ 

 

In the above equation, 𝛼𝑝 is a numerical variable affecting the value of dilation of the 

model. In the present research, this variable is assumed equal to 0.2 just as in other 

studies in this field [14, 15, 18]. 

The variable β in Eq. (11) is the Barcelona model constant whose value has been 

defined by Lee and Fenves [14] as a dimensionless function based on the compressive 

and tensile cohesion 𝑐± {Eq. (20)}. 
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(20) β(𝜅±) = (1 − α)
𝑐−(𝜅−)

𝑐+(𝜅+)
− (1 + α) 

 

Cohesion variables are equivalent to the evolutionary stresses in the effective stress space 

caused by plastic hardening/softening under the uniaxial tension and pressure. Voyiadjis and 

Taqieddin [18] have presented the values of these variables based on the equivalent uniaxial 

strain in accordance with Eq. (21) and (22). 

 

(21) 𝑐−(𝜅−) = 𝑓0
− + 𝑄[1 − exp (−𝑤𝜅−)] 

(22) 𝑐+(𝜅+) = 𝑓0
+ + ℎ𝜅+ 

 

In above equations, 𝑓0
− and 𝑓0

+ indicate, respectively, the compressive and tensile stresses 

in which the concrete non-linear behavior begins. Further, Q, w, and h are the constants of 

the materials. Voyiadjis and Taqieddin [14] have determined the values of these constants 

through trial and error, with regard to the agreement of experimental results and modeling of 

the diagrams of the concrete uniaxial pressure and tension. 

 

2.2 Calculation of numerical variable of damage 

Tao and Phillps [13] have presented a damage surface for controlling the damage occurrence 

similar to the case of the plastic state {Eq. (23)}. As previously mentioned, the numerical 

variables of damage in this model were defined for the pressure and tension, thus the 

damage level function g± is also defined for the compressive and tensile states [18]. It 

should be noted that the model presented by Tao and Phillips [13] was an elastic-damage 

model in which plasticity effects had not been taken into account. 

 

(23) g± = 𝑌± − 𝑌0
± − 𝑍± 

 

In this equation, 𝑌± and 𝑌0
± are, respectively, damage conjugate forces and initial 

conjugate forces of the tensile and compressive damage threshold. Damage initiation is 

controlled by 𝑌0
±. In the damage process, the initial damage level changes. This change is 

defined based on evolutionary rules by 𝑍± variables {Eq. (24)} [18]. 

 

(24) 𝑍± =
1

𝑎±
(

𝜑±

1 − 𝜑±
)

1
𝑏±

 

 

In the above equation, 𝑎± and 𝑏± are four constants of the materials and are determined 

through trial and error based on concrete testing under uniaxial pressure and tension [13, 18-

20]. 

To calculate the values of the damage conjugate forces (𝑌±), Tao and Phillps [13] used 

Eq. (25) and (26). 
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(25) 𝑌+ =
1

2

⟦𝜎𝑖𝑗
+⟧

⟦𝜎𝑖𝑗⟧
(𝜀𝑖𝑗

𝑒 �̅�𝑖𝑗𝑘𝑙𝜀𝑖𝑗
𝑒 −

1

9
(

1

1 + 𝑐𝑌+exp (−𝑑𝑌+)
) (𝜀𝑚𝑚

𝑒 )2δ𝑖𝑗�̅�𝑖𝑗𝑘𝑙δ𝑘𝑙) 

(26) 𝑌− =
1

2

⟦𝜎𝑖𝑗
−⟧

⟦𝜎𝑖𝑗⟧
(𝜀𝑖𝑗

𝑒 �̅�𝑖𝑗𝑘𝑙𝜀𝑖𝑗
𝑒 −

1

9
(

1

1 + 𝑐𝑌−exp (−𝑑𝑌−)
) (𝜀𝑚𝑚

𝑒 )2δ𝑖𝑗�̅�𝑖𝑗𝑘𝑙δ𝑘𝑙) 

In the above equation, c and d indicate the constants of the materials. These equations 

have also been used for modeling the elastic-plastic-damage of concrete [18]. Damage 

conjugate forces presented in Eq. (25) and (26) were calculated by differentiating from the 

elastic part of the free energy. Using these equations in the elastic-damage model will not 

lead to any problems, while it is necessary to take into account the plasticity effect on the 

conjugate forces for models that consider the plasticity effects [14, 19]. Therefore, in this 

study, Eq. (27) and (28) which include the plasticity effects were used for calculation of the 

conjugate forces [19]. 

 

(27) 𝑌+ =
1

2

⟦𝜎𝑖𝑗
+⟧

⟦𝜎𝑖𝑗⟧
(𝜀𝑖𝑗

𝑒 �̅�𝑖𝑗𝑘𝑙𝜀𝑖𝑗
𝑒 ) + 𝑓0

+𝜅+ +
1

2
ℎ(𝜅+)2 

(28) 𝑌− =
1

2

⟦𝜎𝑖𝑗
−⟧

⟦𝜎𝑖𝑗⟧
(𝜀𝑖𝑗

𝑒 �̅�𝑖𝑗𝑘𝑙𝜀𝑖𝑗
𝑒 ) + 𝑓0

−𝜅− + 𝑄 (𝜅− +
1

𝑤
𝑒𝑥𝑝(−𝑤𝜅−)) 

 

Eq. (23) is investigated in each computational step {damage variables of the previous 

step are considered in Eq. (24)}. If the value of g± is less than or equal to zero, no change 

will be applied on the damage variable; otherwise, the values of the damage variables, 

assuming g± = 0, will be calculated using Eq. (29). Subsequently, the numerical variable of 

damage will be calculated using Eq. (6). 

 

(29) 𝜑± = 1 −
1

1 + (𝑎±[𝑌± − 𝑌0
±])

𝑏± 

 

Using the isotropic damage in this model causes the damage to affect the biaxial response 

of the problem. This effect can be eliminated by modification of 𝑎− [18]. Voyiadjis and 

Taqieddin [18] have presented an equation for modification of 𝑎− based on biaxial strains. 

This relation, in a more general case, can be shown as follows: 

 

(30) 𝑎− = 𝑎0
− (1 − 𝛾 [(

〈−𝜀22〉

〈−𝜀11〉
)

1
12

+ (
〈−𝜀33〉

〈−𝜀11〉
)

1
12

]) 

 

In Eq. (30), 𝑎0
− indicates the value resulted from the uniaxial loading or the initial value 

of this constant. Further, 𝜀11, 𝜀22, and 𝜀33 are the main strains. This equation is dependent on 

the direction. The main direction is the direction that has less negative strain and is 

identifiable under the name of 𝜀11 in implementation of the model. In Eq. (30), γ is a 

coefficient calculated through trial and error with compressive strength of at least one 

biaxial compressive state. It should be noted that in case of uniaxial loading, Eq. (30) has no 
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effect on 𝑎−.  

In addition to the constants which are calculable based on the mechanical properties of 

materials, the proposed model includes 9 constants of Q, w, h, 𝑌0
±, 𝑎±, and 𝑏± which have 

no clear experimental definition. In this study, the genetic algorithm optimization method 

was used to calculate these constants. Regarding the equations in the model of Voyiadjis and 

Taqieddin [18], it can be easily understood that in modeling the uniaxial tension, only the 

constants of h ،𝑌0
+ ،𝑎+, and 𝑏+ affect the results; furthermore, in uniaxial compression 

modeling, only the constants of Q ،w   ، 𝑌0
− ،𝑎−, and 𝑏−will be effective [18]. As a result, in 

this research, the constants of the proposed model are determined separately based on 

uniaxial tensile and compressive tests. Here, the values of α and Poisson's ratio were 

considered 0.121 and 0.2, respectively, similarly to the literature [14, 15, 18]. 

 

 

3. IDENTIFICATION OF CONSTANTS USING GENETIC ALGORITHM 
 

3.1. Genetic algorithm 

Genetic Algorithm (GA) is a member of the family of computational methods based on 

artificial intelligence [23]. This method imitates the biological evolution process that leads 

to the survival of the fittest genes or individuals [24]. GA has been widely used for 

searching the optimal values of responses for multi-dimensional problems with several 

parameters. In using this method for multivariable problems, each value of the variables is a 

chromosome, and each response that is a set of chromosomes is called an individual. Each 

response in this method is a set of values of variables that satisfies all the bounds [24]. GA 

starts from a set of initial responses (first generation). Then, the competency of each 

individual is evaluated using the objective function. To achieve the optimal response, the 

individuals should be changed and generate new individuals. Genetic Algorithm uses three 

main operators including selection, combination, and mutation, inspired from the natural 

evolution, to produce generations and improve responses. The selection operator used in this 

study serves to choose the parents based on the previous generation with regard to the 

competency level of the individuals. Using the combination operator in a random process 

between two parents leads to the production of a child with a combination of the parents’ 

characteristics. Mutation is a very important operator in the genetic algorithm. Because, by 

exerting random changes on the parents for production of children, it prevents the produced 

children’s entrapment in the local minimums. Therefore, the whole response space is 

investigated. The mutation rate must be considered low, because a high rate of mutation 

destroys the competency of better individuals [25]. Fig. 2 shows the optimization process by 

GA. In this study, GA tools in MATLAB were utilized [26]. 
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Figure 2. Simple flowchart of genetic algorithm performance 

 

3.2 Objective function 

In this study, the objective function was determined based on the rate of consistency 

between the experimental results and the results of modeling the compressive and tensile 

uniaxial stress-strain diagram. Similarly to studies by Wardeh and Toutanji [22], the 

objective function (𝐹𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒) is calculated as a function of the stress resulted from the 

modeling, and the stress resulted from experimental results at a point with constant strain 

{Eq. (31)}. 

 

(31) 𝐹𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 = 𝑓(𝜎(𝜀𝑖, 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛), 𝜎(𝜀𝑖, 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙)) 

 

To reduce the effect of high-error points on the overall result, the sum of absolute errors 

was considered as the form of the function f {Eq. (32)} instead of using the sum of error 

squares function. By minimizing this function, GA achieves the optimal value for the 

constants of the problem. 

 

(32) 𝐹𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 =
1

𝑛
∑ |

𝜎(𝜀𝑖, 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛) − 𝜎(𝜀𝑖 , 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙)

𝜎(𝜀𝑖, 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙)
|

𝑛

𝑖=1

 

 

In the above equation, n is the number the points tested for compliance, and 𝜀𝑖 is the 

strain in ith step in the step-by-step modeling. 

To achieve the optimal values of constants of the Voyiadjis and Taqieddin’s model [18], 

this model was implemented in MATLAB for an element under the uniaxial loading with 

regard to the presented objective function. To optimize the model constants, the GA tool of 

this software was used [23]. The code written in MATLAB software environment had the 

capability to execute, for each set of the proposed GA constants, the uniaxial loading 

modeling function for compression or tension, and report the value of the objective function 

to GA based on the obtained stress-strain diagram. It should be noted that in addition to the 

points required to determine the objective function, a number of midpoints were also used 

for determining the responses in order to achieve more accurate responses by shrinkage of 

the loading steps. The values of the probability ratio of mutation and combination operators 

were 30% and 70%, respectively, in this research. Due to high computational cost of each 

time of code execution, the initial population was considered as including 50 chromosomes 

and the GA process continued until achieving the optimal values of up to 100 generations. In 

the genetic algorithm method, a domain can be considered for the constants, because proper 
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and limited selection of this domain helps improving the accuracy of the problem. In this 

research, the appropriate values of the constants domain were determined in some of the 

samples following an initial optimization without considering a value for the domain. 

Investigation of several samples made it possible to easily predict these domains with regard 

to the experimental diagram, especially for the damage constants. Moreover, the accuracy of 

the domains was examined based on the final response. If the final response was close to the 

boundaries assigned to the constants, then the optimization process would be re-conducted 

with increase of the response domain.  

 

3.3 Optimization of plasticity and damage tensile constants based on uniaxial tensile test 

In the uniaxial tension state, it is assumed that plasticity and damage are initiated exactly at 

the outset of the softening response [16-18]. Accordingly, 𝑌0
+ can be directly calculated by 

calculating the equivalent strain tensor (𝜀𝑖𝑗
𝑒𝑡) in the maximum uniaxial tensile strength when 

the hardening variable is zero (𝜅+), and placing these values in Eq. (27) {Eq. (33)}. 

 

(33) 𝑌0
+ =

1

2

⟦𝜎𝑖𝑗
+⟧

⟦𝜎𝑖𝑗⟧
(𝜀𝑖𝑗

𝑒𝑡�̅�𝑖𝑗𝑘𝑙𝜀𝑖𝑗
𝑒𝑡) 

 

Results of 14 experimental samples of the uniaxial tensile tests collected from the 

relevant literature were used in this section (Table 1) [27-36]. For each sample, mechanical 

properties required for modeling were determined based on the experimental results (Table 

1). Then, the damage and plasticity constants of each sample were optimized using GA. 

Table 1 presents these results together with the values of the objective function of the most 

optimal mode. 

To examine the accuracy of the results, the uniaxial tensile test diagrams resulted from 

the modeling and experimental results were compared with each other in Fig. 3. For a better 

demonstration of the results, samples with high ultimate strains were shown separately {Fig. 

3(a)}. As seen in this figure, there is an appropriate agreement between the experimental and 

modeling results. 

 
Table 1: Mechanical properties and results of GA for uniaxial tensile 

GA results 
Mechanical 

properties Specimen 
𝑭𝒐𝒃𝒋𝒆𝒄𝒕𝒊𝒗𝒆 𝑎+ 𝑏+ h 𝑌0

+ 
ft 

(MPa) 
fc 

(MPa) 
E 

(MPa) 

0.132 2400 1.210 13127 0.000126 2.03 37.1 16400 T1 (Meng et al. [27]) 
0.093 1920 1.126 3877 0.000279 3.70 67.6 24522 T2 (Meng et al. [27]) 
0.169 941 1.416 2964 0.000276 4.60 83.0 38318 T3 (Meng et al. [27]) 
0.152 6254 0.849 4404 0.000221 4.49 46.8 45493 T4 (Huo et al. [28]) 
0.089 975 1.178 3643 0.000195 3.44 47.1 30288 T5 (Reinhardt et al. [29]) 
0.086 1177 1.455 3214 0.000198 2.56 48.6 16576 T6 (Reinhardt et al. [29]) 
0.072 8661 1.205 4181 0.000087 2.22 65.0 28265 T7 (Yan and Lin [30]) 
0.127 5403 1.006 3536 0.000105 2.88 33.4 39370 T8 (Akita et al. [31]) 
0.074 1714 1.043 8573 0.000138 3.25 29.7 38291 T9 (Akita et al. [31]) 
0.088 5705 1.096 1136 0.000201 3.53 46.8 31000 T10 (Gopalaratnam and 
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Shah [32]) 
0.083 8258 1.848 3175 0.000168 3.40 47.2 34403 T11 (Zhang [33]) 
0.073 950 1.116 4969 0.000394 4.01 46.8 20347 T12 (Li et al. [34]) 
0.090 2335 0.999 4015 0.000093 2.59 65.0 35999 T13 (Ren et al. [35]) 
0.042 19379 1.018 3669 0.000135 2.91 32.1 30072 T14 (Kupfer et al. [36]) 

 

3.4 Optimization of plasticity and damage compressive constants based on uniaxial 

compressive test 

Results of 30 experimental samples of uniaxial compression collected from the relevant 

literature were used in this section (Table 2) [35-44]. For each sample, mechanical properties 

required for modeling were determined based on the experimental results (Table 2).  

 

 
(a) T1-T6 

 
(b) T7-T14 

Figure 3. Comparison of stress-strain diagrams of uniaxial tensile test obtained from modeling 

and experimental results 

 

The equivalent elasticity modulus of each test was calculated, with respect to the 

proposed regulations of ACI-318 [45], based on the uniaxial compressive stress-strain 
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diagram: the front-line slope from the coordinates origin to a point with tension of 0.45 fc 

was considered as equal to the elasticity modulus. f0 is a stress after which the nonlinear 

response is initiated in the uniaxial compressive stress-strain diagram [18]; in other words, 

decrease of the diagram slope begins in this stress. This value was determined by 

investigating the changes in the slope of the experimental uniaxial compressive stress-strain 

diagram. In optimization of the compressive constants, 𝑌0
− was introduced to GA as an 

unspecified constant. But in several sequential execution of the genetic algorithm for a 

particular sample, different values were calculated for the compressive constants and some 

instability was observed in the GA responses. To solve this problem, as in the uniaxial 

tension state, it was assumed that plasticity and damage are initiated simultaneously. In 

another study, Wu et al. [16] considered initiation of damage to be shortly before plasticity; 

thus, this assumption is not unachievable. Based on Equation 28, when the hardening 

variable of (𝜅−) is 0, 𝑌0
−can be calculated by placing the equivalent strain tensor of (𝜀𝑖𝑗

𝑒𝑐) in 

the uniaxial compressive stress of the outset of the nonlinear response (f0) {Eq. (34)}. As it 

can be observed, Eq. (34) is dependent on the Q/w ratio. Therefore, this equation was 

presented in form of a code in the software so that a new 𝑌0
− is calculated for each individual 

in each execution of GA.  

 

(34) 𝑌0
− =

1

2

⟦𝜎𝑖𝑗
−⟧

⟦𝜎𝑖𝑗⟧
(𝜀𝑖𝑗

𝑒𝑐�̅�𝑖𝑗𝑘𝑙𝜀𝑖𝑗
𝑒𝑐) +

𝑄

𝑤
 

 
Table 2: Mechanical properties and results of GA for uniaxial compressive test 

GA results Mechanical properties 

Specimen 
𝑭𝒐𝒃𝒋𝒆𝒄𝒕𝒊𝒗𝒆 𝑎− 𝑏− Q W 𝑌0

− 
fc 

(MPa) 

f0 

(MPa) 

E 

(MPa) 

0.051 5.22 6.968 129.6 756.2 0.2065 122.6 58.7 49051 C1 (Wee et al. [37]) 

0.068 4.33 2.249 103.4 687.6 0.1871 105.7 58.0 45658 C2 (Wee et al. [37]) 

0.063 6.00 2.009 81.8 725.8 0.1426 85.8 50.6 42871 C3 (Wee et al. [37]) 

0.050 6.01 1.967 79.6 1261.5 0.0700 66.6 23.7 41070 C4 (Wee et al. [37]) 

0.062 9.94 1.580 37.9 867.0 0.0556 46.7 29.4 36463 C5 (Wee et al. [37]) 

0.041 13.39 1.314 28.0 881.5 0.0365 30.9 16.3 28412 C6 (Wee et al. [37]) 

0.016 9.47 2.126 70.8 1940.8 0.0395 51.2 15.2 38808 C7 (Li and Ren [38]) 

0.025 18.11 1.109 29.3 1365.8 0.0233 27.6 10.9 31000 C8 (Karsan and Jirsa [39]) 

0.031 29.72 1.783 10.5 763.4 0.0174 16.7 10.0 13820 C9 (Ali et al. [40]) 

0.057 18.58 1.790 21.4 968.9 0.0261 25.3 12.7 19980 C10 (Ali et al. [40]) 

0.016 14.75 1.452 28.7 1997.7 0.0161 27.7 9.0 23530 C11 (Ali et al. [40]) 

0.016 15.04 1.039 35.3 1901.5 0.0198 32.0 9.1 33980 C12 (Ali et al. [40]) 

0.042 10.26 1.056 52.7 1956.6 0.0281 43.5 10.0 44550 C13 (Ali et al. [40]) 

0.029 13.58 1.307 28.6 975.0 0.0322 32.1 13.2 30072 C14 (Kupfer [36]) 

0.017 16.67 1.072 17.9 820.9 0.0244 22.0 9.7 18050 C15 (Dahl [41]) 

0.040 11.23 1.367 31.3 883.4 0.0375 32.1 10.2 25493 C16 (Dahl [41]) 

0.050 7.39 2.050 59.9 1127.1 0.0550 50.1 11.0 33574 C17 (Dahl [41]) 

0.071 6.96 2.769 78.6 1109.5 0.0757 65.0 18.0 33990 C18 (Dahl [41]) 

0.056 6.29 5.513 103.5 880.5 0.1365 93.5 39.2 40595 C19 (Dahl [41]) 

0.057 9.46 3.903 76.5 175.4 0.5218 105.4 84.2 41361 C20 (Dahl [41]) 

0.027 10.98 2.144 27.9 238.0 0.1418 46.4 36.5 27177 C21 (Carreira and Chu [42]) 

0.029 12.17 1.906 25.3 557.9 0.0559 34.9 22.0 23115 C22 (Carreira and Chu [42]) 

0.026 21.68 1.166 18.1 3044.5 0.0076 20.0 7.9 18748 C23 (Carreira and Chu [42]) 

0.031 4.47 4.088 82.0 698.4 0.1283 73.6 23.8 26033 C24 (Carreira and Chu [42]) 
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0.036 7.14 2.697 59.1 1070.4 0.0643 50.7 19.5 20974 C25 (Carreira and Chu [42]) 

0.039 8.97 2.419 42.0 965.5 0.0522 40.5 17.4 17222 C26 (Carreira and Chu [42]) 

0.020 13.92 1.674 18.7 2290.8 0.0103 20.7 6.7 10636 C27 (Carreira and Chu [42]) 

0.045 3.83 0.909 68.1 387.0 0.1907 65.6 33.3 38105 
C28 (Muguruma and 

Watanabe [43]) 

0.028 12.82 1.296 25.5 957.5 0.0289 26.0 9.6 20197 C29 (Sinha et al. [44]) 

0.091 9.97 1.907 56.6 682.1 0.1040 65.0 41.0 39772 C30 (Ren et al. [35]) 

 

After calculating the mechanical properties, damage and plasticity constants and, 

subsequently, the value of 𝑌0
− were optimized for each sample using GA. Table 2 shows 

these results together with the values of the objective function of the most optimal state. By 

comparing the values of objective functions of the compressive and tensile samples, a higher 

precision is observed for the compressive state (Tables 1 and 2). This can be due to the 

higher capacity of the model proposed by Voyiadjis and Taqieddin [18] in modeling the 

uniaxial compressive tests. The uniaxial compressive test diagrams of the samples in two 

categories with compressive resistance of higher and lower than 50 MPa were compared 

with the results of modeling in Fig. 4 and 5, respectively. In these figures, a good agreement 

is observable between experimental and modeling results. This agreement indicates the 

appropriate optimization of the damage and plasticity constants. Further, despite the 

reduction in the accuracy of modeling for the concrete with very high compressive 

resistance, it can be said that the model presented by Voyiadjis and Taqieddin [18] can 

efficiently model concrete in a wide range of compressive resistance (see Fig. 4 and 5). 

 

 
(a) Part I 
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(b) Part II 

Figure 4. Comparison of stress-strain diagrams of uniaxial compressive tests obtained from 

experimental and modeling results of samples with compressive resistance of more than 50 MPa 

 
(a) Part I 

 
(b) Part II 

Figure 5. Comparison of stress-strain diagrams of uniaxial compressive tests obtained from 
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experimental and modeling results of samples with compressive resistance of less than 50 MPa 

 

 

4. COMPARISON OF MODELING RESULTS IN UNIAXIAL 

COMPRESSIVE AND TENSILE TESTS WITH OTHER STUDIES 
 

In Fig. 6, the results of modeling the uniaxial compressive and tensile tests obtained from 

this research have been compared with those of two other valid studies conducted in this 

field. The stress-strain diagram of specimens C8 and T11 in all three studies were predicted 

with similar accuracy (Fig. 6); however, a better modeling has been accomplished for 

sample T10 in the present study {Fig. 6(b)}. 

 

4.1 Investigation of GA optimization results  

 Cyclic tests 

For applying more control on the GA results, six cyclic compressive and tensile tests 

taken from the relevant literature were investigated in this section [29, 32, 39, 43, 44]. In the 

cyclic tests, the irreversible strains are clearly visible. Success in predicting the results is an 

evidence of appropriate modeling of the materials plasticity. 
 

 
(a) uniaxial compressive stress-strain diagram 

 
   (b) uniaxial tensile stress-strain diagram 

Figure 6. Comparison of results of modeling the uniaxial compressive and tensile tests with 
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other studies strain diagram 

 

 Cyclic tensile test 

Fig. 7 shows the experimental results of cyclic tension for samples TC5, TC6, and TC10, 

corresponding to the uniaxial tensile samples T5, T6, and T10 [29, 32]. This test was 

simulated in MATLAB environment and the results presented in Table 1 were used for the 

damage and plasticity constants of each sample. The modeling results were compared with 

the experimental results in Fig. 7. There was an appropriate consistency between the 

corresponding diagrams. In Fig. 7(b), results of modeling sample TC10 were also compared 

with the modeling results of two other valid references. Fig. 7(b) shows superiority of the 

results of the present study. 

 

 Cyclic compressive test 

Samples CC8, CC28, and CC29 were made of materials similar to that of samples C8, 

C28, and C29, and were investigated using cyclic compressive tests [39, 43, 44], To model 

these samples, the GA results were used for their corresponding uniaxial compressive 

samples. Fig. 8 shows the experimental and modeling results for the introduced samples. In 

higher strains, there is a little difference between the experimental and modeling results. The 

author's investigations showed that this difference was due to the nature of the used plastic 

model and could also be seen in modeling results presented in the relevant literature [14-16]. 
 

 
(a) TC5 and TC6 
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(b) TC10 

Figure 7. Comparison of stress-strain diagrams of cyclic tensile tests obtained from experimental 

and modeling 

 

In Fig. 8(b), the results of modeling sample CC8 were compared with the results of 

modeling in two other references. In this figure, although a better response has been 

presented by Lee and Fenves [14] and Wu et al. [16], it should be noted that the damage and 

plasticity constants in these studies have been obtained inversely and by matching the 

results. Yet, in the present study, these constants have been calculated only based on the 

results of uniaxial tensile and compressive tests. 

 

 
(a) CC28 and CC29 
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(b) CC8 

Figure 8. Comparison of stress-strain diagrams of cyclic compressive tests obtained from 

experimental and modeling 
 

 Biaxial tests 

In this section, the performance of model presented in Section (2) and the accuracy of 

proposed GA coefficients for modeling biaxial compressive test as well as the biaxial failure 

envelope for samples concrete of C14 and C7 will be investigated. Conducting the biaxial 

compressive test requires the determination of 𝛾 coefficient. This coefficient can be 

calculated using GA, based on the value of the ultimate resistance of at least one bi-axial 

compressive test and modeling it when other damage and plasticity constants remain 

unchanged. For this purpose, the difference between the modeling and experimental ultimate 

strength in the biaxial state can be presented as the objective function. The values of these 

coefficients for the biaxial samples corresponding to C7 and C14 were calculated as 0.538 

and 0.421, respectively. In Fig. 9(a), the stress-strain diagram of the biaxial compressive test 

with different applied strain ratios for the concrete corresponding to sample C7 was 

compared with the results of modeling based on the constants provided in Table 2. In this 

figure, the diagrams resulted from the stress-strain modeling were in good agreement with 

the experimental results; however, their ultimate strength was correctly predicted. The 

concrete biaxial test which contains a descending branch is one of the most complex tests. 

Further investigations are required to justify the reason of difference between the 

experimental and modeling results, which was not possible in this research due to the limited 

experimental results in this field. This error may be due to different experimental and 

modeling conditions, or even an experimental error. 

One of the most important diagrams obtained from the biaxial tests is the failure 

envelope. The failure envelope diagram corresponding to the concrete used in samples T14 

and C14 is presented in Fig. 9(b) based on the results of Kupfer et al. [36]. Using the results 

of samples T14 and C14 as well as the value of γ calculated in the previous section, the 

biaxial failure envelope diagram of this concrete is illustrated in Fig. 9(b) and compared 

with the corresponding experimental results. In this diagram, there is a good agreement 

between modeling and experimental results; moreover, the modeling response presented in 

this section is slightly conservative compared to other studies. This type of response is 

desirable in the field of civil engineering {Fig. 9(b)}. 
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(a) Stress-strain diagram of biaxial 

compressive test for the concrete 

corresponding to specimens C7 

(b) Failure envelope for concrete 

corresponding to specimens T14 and C14 

 

Figure 9. Comparison of experimental and modeling results, biaxial tests 

 

 

5. SUMMARY AND CONCLUSION 
 

In the present study, in order to determine the constants of an elastic-damage-plastic model 

proposed for concrete, the results of 44 uniaxial compressive and tensile tests were used. 

These constants were determined for all the samples using the GA optimization tool by 

investigating the consistency of experimental and modeling results. Then, the resulted 

constants were investigated for modeling a number of tests representing the behavioral 

nature of concrete. 

The results of this study are summarized as follows: 

 GA could accurately determine the constants of damage and plasticity based on the 

uniaxial tests. Investigation of the GA results for modeling the uniaxial, biaxial, and 

cyclic tests indicated the accuracy of these values for constitutive modeling of concrete.  

 According to the investigations conducted in this study, the quotation proposed in the 

relevant literature stating that "determination of the constants of damage and plasticity 

through comparison of modeling and experimental results of the uniaxial compressive 

and tensile tests", seems to be an appropriate suggestion. Nevertheless, using the trial and 

error method might lead to elimination of the plasticity response of the problem. 

 The model used in this study demonstrated its ability to cover a wide range of concrete 

resistance; nonetheless, this model is less consistent with the uniaxial tension diagram 

than with the uniaxial compressive diagram. 
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